PinAAcle 900T Atomic Absorption Spectrometer
For laboratories needing the best in both flame and THGA furnace atomic absorption (AA), the PinAAcle™ 900T is a combined flame/longitudinal Zeeman furnace system.
Part Number PINAACLE900T
The PinAAcle 900T has the flexibility to switch between flame and furnace in seconds, and its high light throughput optical system, combined with a solid-state detector, provides the highest-quality efficiency and signal-to-noise performance of any AA system on the market. In addition, it features cutting-edge fiber optics for improved detection limits and TubeView™ color furnace camera for easier autosampler tip alignment and sample dispensing, as well as to monitor drying and pyrolysis during analysis for simpler method development. All of this in the smallest flame/furnace AA footprint, saving valuable bench space.
The PinAAcle 900T is controlled by the new Syngistix™ for AA Software, a workflow-based software designed to speed and simplify the journey from sample to results across a wide range of atomic absorption techniques.
21 CFR Part 11 Compatible | Yes |
---|---|
Height | 64.0 cm |
Model Name | PinAAcle 900T |
Portable | No |
Product Brand Name | PinAAcle |
Warranty | 1 Year |
Weight | 141.0 kg |
Width | 95.0 cm |
With an inherent toxicity, a tendency to accumulate in the food chain and a particularly low removal rate through excretion, lead (Pb), cadmium (Cd) and arsenic (As) cause harm to humans even at low concentrations.
Consumers select fruit juice because it is a tasty, convenient beverage and generally understood to be a more nutritious alternative to carbonated beverages. For 100% juice products, the nutrition content of the original fruit itself is well known, which translates to the expected nutritional value of the final juice product. Detailed labeling is required on food products; for consumers, any comparative variance can be a strong incentive to choose one product over another. In an effort to appeal to consumers and address market needs, many juice products may also be fortified with micronutrients to boost or add to what is already present naturally.
While ICP-OES is generally favored as a multi-element analytical method, the cost savings, simplicity and speed of operation of flame atomic absorption (AA) provides an attractive alternative. This work demonstrates the ability of the PinAAcle™ 900 AA with a FAST Flame sample automation accessory to rapidly and accurately measure nutritional elements in fruit juices.
Milk is an important source of nutrients, mainly for children. Because of its importance, milk is available in several different forms, most commonly as fresh, but it is also available in nonperishable forms (such as powdered and evaporated). Therefore, the requirement exists to analyze several forms of milk for nutritional elements. While ICP-OES is generally favored in a multi-element analytical environment, the cost savings, simplicity and speed of operation of a flame atomic absorption (AA) system provide an attractive alternative. Measuring multiple elements by flame AA requires each sample to be analyzed individually for each element, which impacts the speed advantage of flame AA – however, to address the speed issue, a fast, high-throughput sample automation system can be used.
This work demonstrates the ability of the PinAAcle™ 900 AA spectrometer to reliably and effectively analyze common nutritional elements in a variety of milks over a wide range of concentrations. Coupling the PinAAcle 900 with the FAST Flame 2 sample automation accessory minimizes user error when performing dilutions and making calibration standards increases throughput and provides excellent long-term stability, increasing productivity for the laboratory.
Breakfast is an important meal in providing essential nutrients to keep your energy levels up throughout the day. How do we ensure the food and beverages we consume are healthy, nutritious and safe? Following is a collection of application notes highlighting solutions that will help you identify micronutrients in milk, cereal, juice and fresh and dried fruits as well as toxic metals in tea, dairy products and apple juice to ensure safety of your breakfast foods.
To protect the integrity of semiconductor and electronics end-products, semiconductor researchers and developers (R&D) and manufacturing QA/QC functions face unique challenges to reduce contaminates, sometimes down to ultra-trace levels. Metal determination in the sub-ppb range are required for the analysis of complex sample matrices and corrosive acids.
To meet these requirements, high-performance analytical techniques such as inductively coupled plasma mass spectrometry (ICP-MS) are preferred for rapid multi-element analysis, however, diagnosing problems can also involve only a few elements, in which graphite furnace atomic absorption spectrometry (GFAAS) is recommended.
Learn how GFAAS can help diagnose problems in semiconductor R&D and QA/QC processes.
Lead (Pb) and cadmium (Cd) are common pollutants in grains and are extremely toxic. Pb is harmful to human organs even at trace levels, and once it accumulates in the body, it causes inhibition of hemoglobin formation and neurological disorders. Cd is even classified as human carcinogen [Group 1 - according to International Agency for Research on Cancer]. It is reported that Cd leads to severe kidney problems which can be fatal and is also associated with brittle bones and liver problems. Rice, as the most widely consumed cereal grain in Asia/China, can quickly pick up Pb and Cd from toxins, pesticides and fertilizers in the soil, thereby endangering the health of millions of people through their diet. Therefore, it is extremely important to develop a simple, reliable method to monitor the levels of Pb and Cd in rice. According to Chinese national standard GB 2715-2016 Hygienic Standard for Grain, the maximum concentrations of Pb or Cd in grains must be below 0.2 mg/kg; the allowable level in the European Union is the same [EC 1881/2006]. The official technique for the determination of heavy metals in both cases is graphite furnace atomic absorption spectroscopy (GFAAS, GB/T 5009. 12-2017, GB/T 5009-2017. 15 and EN 14083:2003). Samples can be pretreated using various methods, including microwave digestion, hot block digestion, dry ashing, and hot plate digestion. It is found that these conventional digestion procedures are always complicated and time-consuming (two-four hours or even longer). Plus, conventional sample preparation techniques require large quantities of corrosive and oxidizing reagents, increasing the chance for contamination which could lead to inaccurate results. Special PTFE vessels are needed for microwave digestion; however, reusable utensils might also cause cross contamination.
Fortified breakfast cereals are an important source of nutrition for children, and consumers have come to expect high quality from a variety of cereals and continue to select fortified products over non-fortified products in the marketplace. The efficient production of these nutritionally fortified breakfast cereals requires careful formulation and uniformity batch to batch. Ongoing analytical measurement of nutritional additives and the total micronutrient content in the cereal is one way in which food producers can quantify the quality and consistency of their cereal products.
While ICP-OES is generally favored as a multi-element analytical method, the cost savings, simplicity and speed of operation of flame atomic absorption (AA) provides an attractive alternative. This work demonstrates the ability of the PinAAcle™ 900 AA with a FAST Flame sample automation accessory to rapidly and accurately measure nutritional elements in a variety of fortified breakfast cereals.
With an increased focus on healthy living and the consumption of healthy foods, interest in the nutritional quality of the fruit we consume has become more important. When fresh fruit is not available, dried fruit is often substituted, and manufacturers and customers would like to know that the dried fruit has not lost some nutritional value during processing. One way of monitoring the quality of fresh or dried fruit is by measuring the micronutrient concentration contained within. Micronutrients are represented by trace elements considered to be nutritionally valuable, and it is these elements that can be analyzed via various inorganic analytical methods.
While ICP-OES is generally favored as a multi-element analytical method, the cost savings, simplicity and speed of operation of flame atomic absorption (AA) provides an attractive alternative. This work demonstrates the ability of the PinAAcle™ 900 AA spectrometer coupled to a FAST Flame sample automation accessory to analyze common nutritional elements in a variety of fresh and dried fruit.
The heavy metal contamination of soil is one of the most widespread and severe environmental problems. This pollution not only decreases crop production, but also affects the health of people consuming the resulting food. With the increased knowledge about the impact of heavy metals from food on human health, the quality of soil resources has attracted considerable attention and concern.
Because they do not degrade and are toxic, heavy metals accumulate in the human body, leading to various serious diseases, including cancer. Cadmium (Cd), lead (Pb) and chromium (Cr) are commonly regarded as extremely toxic elements since they are harmful to humans, even at low concentrations. Zinc (Zn), nickel (Ni) and copper (Cu) are essential metals for plants at trace concentrations but are toxic if present at higher concentrations. Therefore, routine monitoring of these six metals in soil is vitally important to protect the quality and safety of food.
This work describes the analysis Cd, Cr, Cu, Pb, Ni, and Zn in soil using the PinAAcle 900H AA spectrometer, leveraging a rapid digestion procedure which uses less acid than conventional digestion methods.
Feed milling today is a complex business, and agribusinesses both large and small need to balance the nutritional and safety needs of livestock with availability of raw ingredients and their seasonality and variability. Add to that the valuable supplementation and medication that millers supply, and it’s clear: you’re creating a complete nutritional delivery system, not just a simple mix of grains.
The grain industry is very complex. It’s global, diverse, and can also present analytical challenges. Today’s grain users demand more when it comes to quality, safety, and uniformity. In addition, they seek diverse products with unique characteristics.
PerkinElmer is equipped to help the grain industry in its quest to feed the world – nutritiously and economically. Our testing and analysis solutions encompass the three primary areas required for complete knowledge of grains and their derivatives – composition, functionality, and safety.
Food testing labs like yours are constantly challenged with accurately analyzing samples quickly and efficiently - all while striving to reduce costs due to market forces. Your commitment to ensuring meat and seafood are safe for consumption, as demand increases, is an uphill battle.
Our commitment to you: to provide a range of solutions across multiple technologies, products, and services that meets or exceeds the testing needs of food processors. Our solutions offer more efficiency and increased accuracy and sensitivity for better yields in real time with minimal training.
From instrumentation and software to consumables and reagents to service and support, we are dedicated to providing you with end-to-end solutions that ease your everyday challenges of automation, throughput, service, and time to results.
The PinAAcle™ series of atomic absorption (AA) spectrometers brings AA performance to new heights. Engineered with an array of exciting technological advances, it offers a variety of configurations and capabilities to deliver exactly the level of performance you need:
And no matter which model you select (900F, 900Z, 900H, 900T), you’ll discover an intuitive, highly efficient system capable of simplifying your journey from sample to results—even with the most difficult matrices. Experience peak performance and unmatched productivity. Step up to the PinAAcle series from PerkinElmer.
Download the brochure to learn more.
Consumers are exposed to low levels of heavy metals on a daily basis and long term exposure can have negative health impacts. Since the elements themselves are distributed unevenly throughout, for example, cereal grain, with the germ and the outer layers having the highest concentrations, analyzing these grains to detect low analyte levels with accuracy and controlled reproducibility is a challenge.
The atomic absorption analysis technique provides a high performance option with features like a closed-furnace design that is sealed at both ends with easily removable bayonet-mount windows. In addition, independently controlled external and internal gas streams provide maximum flexibility, tube life, and sensitivity.
Systems like the PinAAcle™ 900 AA spectrometer make it faster and easier to get from sample to results by reducing your grain method development time, while PerkinElmer consumables and superior services will keep your lab at peak performance.
Atomic spectroscopy is a family of techniques for determining the elemental composition of an analyte by its electromagnetic or mass spectrum. Several analytical techniques are available:
And selecting the most appropriate one is the key to achieving accurate, reliable, real-world results.
This guide provides a basic overview of the most commonly used techniques and the information necessary to help you select the one that best suits your specific needs and applications.
With the onset of the COVID-19 pandemic, the use of face masks by the general public has become a critical personal protective measure to minimize person-to-person transmission. While health care workers use medical or surgical masks, the general population uses non-medical, otherwise known as hygienic, face masks to greatly reduce the transmission of SARS-CoV-2 by capturing droplets and aerosols from those infected with the virus.
In response to the increased demand for both the number and variety of non-medical face masks, many companies are now producing them to meet the public’s need, and with this great variety, the quality and the safety of the face masks must be assessed. This work describes the considerations surrounding metal analysis in hygienic face masks used to prevent the spread of COVID-19.