PinAAcle 500 Flame Atomic Absorption Spectrometer
Our PinAAcle™ 500 is the world’s first completely corrosion-resistant flame atomic absorption (AA) spectrometer, designed to withstand the harshest environments and most corrosive samples. It offers superior durability, longer life, lower maintenance costs, and the fastest return on investment of any flame AA.
Part Number PinAAcle500
The PinAAcle 500 is a robust, fully-integrated, flame-only benchtop system, ideal for laboratories needing a reliable, easy-to-use, yet high-performance flame AA. It is equipped with an innovative touchscreen interface with the flexibility to operate via its easy-to-use Syngistix Touch™ software or the more comprehensive, optional Syngistix™ for AA Software.
The PinAAcle 500 is designed for:
The PinAAcle 500 is engineered to deliver an uncompromising level of performance at an unbeatable price, putting the industry’s most robust, reliable flame AA within reach of even the most budget-conscious laboratories. Discover an instrument engineered to outlast and outperform… and take your laboratory to a new PinAAcle of productivity and profitability.
21 CFR Part 11 Compatible | Yes |
---|---|
Height | 64.0 cm |
Model Name | PinAAcle 500 |
Portable | No |
Product Brand Name | PinAAcle |
Warranty | 1 Year |
Weight | 57.0 kg |
Width | 67.0 cm |
With an inherent toxicity, a tendency to accumulate in the food chain and a particularly low removal rate through excretion, lead (Pb), cadmium (Cd) and arsenic (As) cause harm to humans even at low concentrations.
Consumers select fruit juice because it is a tasty, convenient beverage and generally understood to be a more nutritious alternative to carbonated beverages. For 100% juice products, the nutrition content of the original fruit itself is well known, which translates to the expected nutritional value of the final juice product. Detailed labeling is required on food products; for consumers, any comparative variance can be a strong incentive to choose one product over another. In an effort to appeal to consumers and address market needs, many juice products may also be fortified with micronutrients to boost or add to what is already present naturally.
While ICP-OES is generally favored as a multi-element analytical method, the cost savings, simplicity and speed of operation of flame atomic absorption (AA) provides an attractive alternative. This work demonstrates the ability of the PinAAcle™ 900 AA with a FAST Flame sample automation accessory to rapidly and accurately measure nutritional elements in fruit juices.
Milk is an important source of nutrients, mainly for children. Because of its importance, milk is available in several different forms, most commonly as fresh, but it is also available in nonperishable forms (such as powdered and evaporated). Therefore, the requirement exists to analyze several forms of milk for nutritional elements. While ICP-OES is generally favored in a multi-element analytical environment, the cost savings, simplicity and speed of operation of a flame atomic absorption (AA) system provide an attractive alternative. Measuring multiple elements by flame AA requires each sample to be analyzed individually for each element, which impacts the speed advantage of flame AA – however, to address the speed issue, a fast, high-throughput sample automation system can be used.
This work demonstrates the ability of the PinAAcle™ 900 AA spectrometer to reliably and effectively analyze common nutritional elements in a variety of milks over a wide range of concentrations. Coupling the PinAAcle 900 with the FAST Flame 2 sample automation accessory minimizes user error when performing dilutions and making calibration standards increases throughput and provides excellent long-term stability, increasing productivity for the laboratory.
To protect the integrity of semiconductor and electronics end-products, semiconductor researchers and developers (R&D) and manufacturing QA/QC functions face unique challenges to reduce contaminates, sometimes down to ultra-trace levels. Metal determination in the sub-ppb range are required for the analysis of complex sample matrices and corrosive acids.
To meet these requirements, high-performance analytical techniques such as inductively coupled plasma mass spectrometry (ICP-MS) are preferred for rapid multi-element analysis, however, diagnosing problems can also involve only a few elements, in which graphite furnace atomic absorption spectrometry (GFAAS) is recommended.
Learn how GFAAS can help diagnose problems in semiconductor R&D and QA/QC processes.
Fortified breakfast cereals are an important source of nutrition for children, and consumers have come to expect high quality from a variety of cereals and continue to select fortified products over non-fortified products in the marketplace. The efficient production of these nutritionally fortified breakfast cereals requires careful formulation and uniformity batch to batch. Ongoing analytical measurement of nutritional additives and the total micronutrient content in the cereal is one way in which food producers can quantify the quality and consistency of their cereal products.
While ICP-OES is generally favored as a multi-element analytical method, the cost savings, simplicity and speed of operation of flame atomic absorption (AA) provides an attractive alternative. This work demonstrates the ability of the PinAAcle™ 900 AA with a FAST Flame sample automation accessory to rapidly and accurately measure nutritional elements in a variety of fortified breakfast cereals.
With an increased focus on healthy living and the consumption of healthy foods, interest in the nutritional quality of the fruit we consume has become more important. When fresh fruit is not available, dried fruit is often substituted, and manufacturers and customers would like to know that the dried fruit has not lost some nutritional value during processing. One way of monitoring the quality of fresh or dried fruit is by measuring the micronutrient concentration contained within. Micronutrients are represented by trace elements considered to be nutritionally valuable, and it is these elements that can be analyzed via various inorganic analytical methods.
While ICP-OES is generally favored as a multi-element analytical method, the cost savings, simplicity and speed of operation of flame atomic absorption (AA) provides an attractive alternative. This work demonstrates the ability of the PinAAcle™ 900 AA spectrometer coupled to a FAST Flame sample automation accessory to analyze common nutritional elements in a variety of fresh and dried fruit.
When mining for precious metals, ores are extracted from the ground and subjected to various sample preparation procedures in order to remove the metals of interest. A commonly used procedure to isolate metals from the ore is fire-assay, which leaves a matrix-free “button” of the metal. This work focuses on the analysis of precious metals in simulated digested precious metal buttons, and demonstrates the ability of the PinAAcle™ 500 Flame AA spectrometer to accurately measure low-level gold, palladium, platinum, copper, and silver in matrices which result from the fire-assay preparation of ore samples.
Graphite furnace atomic absorption spectrophotometry (GFAAS) has been widely applied to the determination of trace elements in food due to its selectivity, simplicity, high sensitivity, and its capability for accurate determinations in a wide variety of matrices. Edible oils are generally low in trace element concentrations, however, metals such as arsenic (As), lead (Pb), cadmium (Cd), chromium (Cr), and selenium (Se) can be found and are known for their toxicities which affect the health of consumers.
Feed milling today is a complex business, and agribusinesses both large and small need to balance the nutritional and safety needs of livestock with availability of raw ingredients and their seasonality and variability. Add to that the valuable supplementation and medication that millers supply, and it’s clear: you’re creating a complete nutritional delivery system, not just a simple mix of grains.
The grain industry is very complex. It’s global, diverse, and can also present analytical challenges. Today’s grain users demand more when it comes to quality, safety, and uniformity. In addition, they seek diverse products with unique characteristics.
PerkinElmer is equipped to help the grain industry in its quest to feed the world – nutritiously and economically. Our testing and analysis solutions encompass the three primary areas required for complete knowledge of grains and their derivatives – composition, functionality, and safety.
Food testing labs like yours are constantly challenged with accurately analyzing samples quickly and efficiently - all while striving to reduce costs due to market forces. Your commitment to ensuring meat and seafood are safe for consumption, as demand increases, is an uphill battle.
Our commitment to you: to provide a range of solutions across multiple technologies, products, and services that meets or exceeds the testing needs of food processors. Our solutions offer more efficiency and increased accuracy and sensitivity for better yields in real time with minimal training.
From instrumentation and software to consumables and reagents to service and support, we are dedicated to providing you with end-to-end solutions that ease your everyday challenges of automation, throughput, service, and time to results.
Quality control-monitoring and testing are important in ensuring the quality of palm oil. The quality control parameters are used to judge the quality of palm oil products and it can be monitored and tested to ensure that the palm oil is not deliberately or accidentally adulterated.
Consumers are exposed to low levels of heavy metals on a daily basis and long term exposure can have negative health impacts. Since the elements themselves are distributed unevenly throughout, for example, cereal grain, with the germ and the outer layers having the highest concentrations, analyzing these grains to detect low analyte levels with accuracy and controlled reproducibility is a challenge.
The atomic absorption analysis technique provides a high performance option with features like a closed-furnace design that is sealed at both ends with easily removable bayonet-mount windows. In addition, independently controlled external and internal gas streams provide maximum flexibility, tube life, and sensitivity.
Systems like the PinAAcle™ 900 AA spectrometer make it faster and easier to get from sample to results by reducing your grain method development time, while PerkinElmer consumables and superior services will keep your lab at peak performance.
Atomic spectroscopy is a family of techniques for determining the elemental composition of an analyte by its electromagnetic or mass spectrum. Several analytical techniques are available:
And selecting the most appropriate one is the key to achieving accurate, reliable, real-world results.
This guide provides a basic overview of the most commonly used techniques and the information necessary to help you select the one that best suits your specific needs and applications.